AN IMPROVED APPROACH FOR SOLUTIONS OF SYSTEMS OF LINEAR FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS

نویسندگان

چکیده

In this paper, a numerical matrix method is used to solve the systems of high-order linear Fredholm integro-differential equations with variable coefficients under mixed conditions. The technique consists collocation points and Morgan-Voyce polynomials. residual error functions solutions are also presented. Firstly, approximate formed secondly, an problem constituted in favor function. computed for by using present method. original corrected polynomial solutions. When exact not known, absolute errors can be approximately constructed through problem. Numerical examples included demonstrate validity applicability technique, results compared different methods. All computations have been performed MATLAB v7.11.0 (R2010b).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

Solving Non-linear Fredholm Integro-differential Equations

In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...

متن کامل

Interpolation correction for collocation solutions of Fredholm integro-differential equations

In this paper we discuss the collocation method for a large class of Fredholm linear integro-differential equations. It will be shown that, when a certain higher order interpolation operation is added to the collocation solution of this equation, the new approximations will, under suitable assumptions, admit a multiterm error expansion in even powers of the step-size h. Based on this expansion,...

متن کامل

Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations

This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction  principle and Bihari's inequality.  A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.

متن کامل

NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this article we have considered a non-standard finite difference method for the solution of second order  Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mu?la journal of science and technology

سال: 2021

ISSN: ['2149-3596']

DOI: https://doi.org/10.22531/muglajsci.867672